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Abstract—This paper presents a novel physical impersonating
attack against face recognition systems. It aims at generating
consistent style changes across multiple pictures of the attacker
under different conditions and poses. Additionally, the style
changes are required to be physically realizable by make-up and
can induce the intended misclassification. To achieve the goal, we
develop novel techniques to embed multiple pictures of the same
physical person to vectors in the StyleGAN’s latent space, such
that the embedded latent vectors have some implicit correlations
to make the search for consistent style changes feasible. Our
digital and physical evaluation results show our approach can
allow an outsider attacker to successfully impersonate the insiders
with consistent and natural changes.

I. INTRODUCTION

Deep learning models have been widely used in face recog-
nition systems due to their impressive performance [1], [2],
[3], [4]. For example, with sufficient training data, sophisti-
cated model architectures, and advanced training strategies,
existing face recognition models can achieve more than 99%
accuracy. With the emerging Machine Learning as a Service
(MLaaS) provided by large vendors [5], [6], [7], [8], it also
becomes easier for non-experts to deploy their own face
recognition systems. Despite their impressive performance,
recent research has revealed that face recognition models are
vulnerable to adversarial attacks that can mislead an input
image to a pre-defined target. Most of the existing attacks
reside in the cyber space [9], [10], by directly adding invisible
(stealthy) perturbations to the digital images, and feeding them
into the classification models. However, most of these digital
attacks rarely threaten the systems in the real world, due
to the fact that the perturbation noises cannot be physically
implemented or captured by the camera.

To extend the attacks to the physical world, a few im-
personating attacks utilize more visible noises yet confined
in small local (masked) areas (e.g., eyeglass frame [11] or
stickers [12]). For example, AdvGlass [11] uses the traditional
digital attack to generate unbounded adversarial noises in the
eyeglass frame area. The attacker then prints out the patch and
attaches it to a pair of glasses. Wearing this pair of glasses can
make the model recognize the attacker to the target person.

However, adversarial noises of existing physical imper-
sonating attacks (e.g., noticeable adversarial accessories) are

still too distinguishable from natural faces to be stealthy.1

Also, accessories are not allowed in many security-related
situations such as the photos for visa application [13]. Another
limitation of existing physical impersonating attacks is that
they lack consistent effectiveness across faces captured at
different poses, as they usually attack only one face or faces
with almost the same poses.2

Different from the definition of stealthiness in existing at-
tacks, we argue that the overall perturbation naturalness (such
as whole-face style changes consistent across different poses)
instead of bounded perturbation at the pixel level can provide
better stealthiness. For example, at a security check location,
a person wearing a pair of weird glasses is more ostentatious
and suspicious than a person wearing daily makeup. To this
end, we utilize StyleGAN, which has been widely used in
image editing tasks [14], [15] due to the embeddability (i.e.,
the ability to invert a given image to a latent value of the
StyleGAN) and semantic editability (i.e., style editing) of its
latent space. Although existing methods [15], [16] can highly
effectively mutate the style of a given image, they can hardly
achieve consistent style changes across different images from
the same physical person (potentially with different poses),
which is key to achieving an effective physical impersonating
attack.

In this paper, we propose a novel impersonating attack based
on StyleGAN. Given a set of pictures of the attacker, under
different conditions and having different poses, our attack
aims to produce consistent style changes that are physically
realizable and can flip the classification result to a target
person. In order to achieve the goal, we need to embed the
set of images, namely, generating the latent vectors for these
images. The StyleGAN does not have any concept of face
identity and hence the embedded latent vectors may not have
any strong correlations although they belong to the same
physical person. As a result, finding a consistent style change
for this set of images (from the same physical person) is no
different from finding it for a set of arbitrary images, which
is difficult. We have two key observations that allow us to

1We conducted a user study via Amazon MTurk with 240 users. About
70% more users consider AdvGlass’s images are more noticeable than ours.

2Although there exist some spatial transformations to ease this problem for
traffic signs, how to apply them for face images (e.g., from the frontal face
to the side face) is still largely open.
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Fig. 1: Attack scenario.

address the problem. First, we find that poses of generated
faces by the StyleGAN can be controlled by injecting specific
noises at certain style blocks. Second, given an attacker’s
image with pose p, if we can find the corresponding noise
τ and then enforce such τ during embedding, we are able to
force the StyleGAN to establish some implicit connections for
the multiple images of the attacker, like recognizing that they
belong to the same person. As such, we can find a consistent
style change for these properly embedded images (i.e., images
generated by the embedded latent vectors) that enables the
impersonating attack.

In summary, we have the following contributions:

• We propose a novel impersonating attack approach based
on StyleGAN. It supports both white-box and black-box
settings.

• We study the effects of random noises injected in Style-
GAN. Based on our new findings, we design a novel
embedding approach to faithfully project real attacker’s
images with different poses into the latent space.

• We develop a batch-based attack method with statistical
constraints to generate consistent, physically applicable
and stealthy style changes for images of the same person
with different poses.

• We build a tool ImU (Physical Impersonating Attack for
Face Recognition System with NatUral Style Changes)
and evaluate it on 10 large models pre-trained on 4 large-
scale face recognition datasets and 2 commercial services.
Digital evaluation results in both white-box and black-
box settings show our approach can generate consistent
natural style changes for faces with different poses. In the
white-box setting, our approach can achieve the highest
attack success rate even with the physical-world simu-
lation (i.e., adding noises to and cropping and rescaling
the images). In the black-box setting, our approach can
achieve 16x higher attack success rate compared to the
existing methods. After physically applying the generated
changes, attackers can successfully conduct the physical
impersonating and fool the classifiers. We also show
attackers can physically attack the online commercial
services. On models trained with different adversarial
training strategies (even with the adaptive defense), our
approach still yields high attack success rate.

II. PHYSICAL IMPERSONATION ATTACKS

In this section, we first introduce our threat model and then
summarize four requirements of realizing physical imperson-
ation attacks. Afterwards, we show existing methods fail in
fulfilling them and showcase our results.

A. Threat Model

Attack Scenario. Figure 1 shows our attack scenario. Our
subject model is a face recognition system based on a neural
network classifier or verifier.

A classifier is trained on face images from a set of N
authorized people. Given one image, the system predicts the
label from N . When recognizing a person, the system requires
taking multiple photos with different poses. The attackers are
outsiders not among the N people (i.e., out-of-distribution)
who want to impersonate some target people (e.g., label 1)
among the N people (i.e., in-distribution).

A verifier is trained to extract features of given images so
that images of the same person have smaller feature distances
(e.g., higher cosine similarity score) than those of different
people. During recognition, if the similarity score of two
images (i.e., the attacker’s and target person’s images) is
larger than a pre-defined threshold, they are considered as one
person.

Specifically, the outsider attacker aims to physically im-
personate the target people by changing the styles. With the
changed styles, the attacker’s images captured with different
poses should be recognized as the target person by the system.
More importantly, the style change should not be ostentatious
or suspicious.
Attackers’ Capability. We assume that attackers can utilize
public face data (e.g., CelebA [17]) to train generative mod-
els (e.g., StyleGAN [18]) . The training data can be non-
overlapping with the subject model’s training data. For face
classifiers, attackers need no access to the target person’s
image. For face verifiers, attackers have the target person’s
image. In the white-box setting, attackers can access the
internals of the subject model and thus can use a gradient-
based method to conduct the attack. In black-box attack on
a classifier, attackers treat the model as a black box and use a
query-based method. In black-box attack on a verifier, attack-
ers conduct a transferable white-box attack against surrogate
verifiers. Our attacker’s capability is consistent with existing
literature [11], [19], [20], [21], [22]. Attackers should be able
to apply makeup by themselves or ask some professionals to
do that.

B. Requirements of Physical Attacks

We follow the standard way to conduct physical attacks: the
attacker first generates the adversarial image in cyberspace,
and then tries to physically realize it in the real world. In the
following, we summarize four challenging requirements for
conducting physical attacks.
Requirement 1: ability of using outsider attacker’s images.
A physical attack uses a real, outsider attacker, and an attack
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Fig. 2: Digital/physical examples of different attacks. The target person is label 2396 of VGGFace dataset and the subject
model is VGG16. Three ground truth images of the target person are displayed in the rightmost column. The first row shows
the images of an attacker with different poses. The number in each image denotes the confidence. AdvGlass’s results are more
obvious/ostentatious and less effective than ours. SemAdv was proposed as a digital attack. Appendix has another example
where the same attacker impersonates an actress.

method should be able to use real people’s images. For exam-
ple, based on one real image of the attacker, the attack method
should return an updated/generated image which can 1) fool
the subject model, and 2) guide the attacker to physically apply
the changes.

Requirement 2: physical applicability of the adversarial
changes. We need to be able to physically apply the adver-
sarial changes for a physical attack. For example, we cannot
exactly map each pixel in the digital image (e.g., one pure red
pixel) to a certain dot of the face. In addition, sharp change
of colors usually cannot be captured by the camera.

Requirement 3: stealthiness of the adversarial changes. In
the physical world, we also aim to keep the stealthiness of
the attack, preventing the adversarial changes from being too
suspicious in humans’ perspective. For example, it would be
too ostentatious to have a half-red and half-green face.

Requirement 4: effectiveness across different poses and
views with the same adversarial change (i.e., consistency).
Finally, it is necessary that the attacker with the style changes
should be able to consistently intrude the subject classifier at
various poses. The reason is that when captured by the camera,
the attacker cannot exactly ensure a certain pose.

C. Limitations of Existing Methods

AdvGlass [11]. AdvGlass is a representative physical attack
in literature. It uses traditional unbounded digital (pixel-based)
attacks (e.g. PGD [9]) and confines the optimization in certain
areas (e.g., eyeglasses). Specifically, given an image x of
the attacker, AdvGlass uses an eyeglass frame mask M to
constrain the optimization of adversarial perturbations δ such
that x ⊙ (1 − M) + δ ⊙ M is recognized as the target
person. M only contains 1 (for the eyeglass frame area) and
0 elsewhere. It also enhances the physical applicability by
encouraging the colors used by the adversarial perturbations
to be close to a set of printable colors. Then, the attacker
can print out δ ⊙ M and attach it on a real eyeglass frame.
To robustify the adversarial glasses, AdvGlass uses a set of
images with slightly different poses (almost frontal views) and
thus the glass frame mask position is almost fixed without any
perspective transformations.3

There are three drawbacks of AdvGlass. First, accessories
like eyeglasses are not allowed in many security-related cir-
cumstances such as photos used in visa applications [13].
Second, the weird adversarial glasses are still too ostentatious

3In practice, we extend AdvGlass by automatically resizing and rotating
the mask and noises to fit the different poses.
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and suspicious to be stealthy. From the fourth row of Figure 2,
we can observe that the eyeglasses indeed have strange colors
and are not natural. Third, although AdvGlass uses a set of
images with slightly different poses, the glass frame mask
position is still almost fixed frontal views without any perspec-
tive transformations. Consequently, with printed eyeglasses,
the attacker may not be able to successfully launch the attack
with different poses. The results are shown in the left part
of the last row in Figure 2. None of them are successfully
recognized as the target person4.
SemAdv [19]. Applying usual digital (pixel-based) attacks in
the physical case is extremely challenging, and SemAdv is a
potential choice as it is able to edit images on the attribute
level. Specifically, SemAdv first uses a single-attribute editor
network (i.e., a pair of encoder E and decoder D) to change
one feature c of the input image x (e.g., adding/removing
glasses). For example, x is a face without glasses (i.e., the
original feature vector c0 = 0), D(E(x, 1−c0)) will add a pair
of glasses to x. To make the edited image recognized as the
target person, SemAdv further optimizes a coefficient tensor
to interpolate between the internal encoding of the attacker’s
raw image and the edited image.

However, applying SemAdv physically still has several
limitations. First, as shown by the third row of Figure 2,
the style changes at different poses are not consistent. This
is because SemAdv can only attack one image (frontal view).
Second, SemAdv is not physically applicable as the adversarial
noises are dispersed across the image instead of concentrating
on the faces (see Figure 29 in the appendix). Third, SemAdv’s
capability of using real images is closely dependent on the
capability of D and E (i.e., StarGAN [23] in their paper).
As such, SemAdv can only work for in-distribution data
(i.e., frontal view faces very similar to training data) because
StarGAN is less generalizable on unseen data than some more
sophisticated GANs (e.g., StyleGAN).
AdvMakeup [20]. Similar to the eyeglasses mask in Adv-
Glass, AdvMakeup also uses a mask M to only modify the
orbital area. AdvMakeup attacks verifiers. For one target image
xt, it trains a model G to generate changes δ = G(xa) for one
image xa of an attacker such that xa ⊙ (1 − M) + δ ⊙ M
and xt have a small feature distance. Figure 3 shows the
results of ours and AdvMakeup. Because of the mask-based
modification, the patched area has visual disparities (thus less
stealthy and natural). Also, AdvMakeup attacks each image
separately, and there are hence no explicit constraints on the
consistency.

D. Our Digital and Physical Examples

Table I summarizes to what extent different attacks satisfy
the four requirements. We aim to simultaneously satisfy the
four requirements, and some examples are shown in Figure 2.
Compared to existing methods, our results (fifth row) are

4AdvGlass was also reported to have a poor physical attack performance
on complicated models [20]. The models physically attacked in the AdvGlass
paper recognized only ≤ 143 identities [11], whereas VGG16 here recognizes
≥ 2.6K identities.

TABLE I: Summary of different attacks
Challenges AdvGlass SemAdv AdvMakeup Ours

1) Real attackers Yes No Yes Yes
2) Physical applicability Partial No Yes Yes
3) Stealthiness Partial - Partial Yes
4) Consistency Extended by us No Partial Yes

white-box facenet

0.8017

0.8216 0.8334

0.5644

0.57370.5623

Fig. 3: Examples of ours (left) and AdvMakeup (right). The
subject model is a verifier FaceNet pre-trained on VGGFace2.
The target image is the third target image in Figure 2. Please
zoom in for a better inspection.

consistent among different poses, natural-looking, and thus
stealthier. Different from existing physical attacks, we claim
that the small size of adversarial noises is not the necessary
condition of a stealthy attack, and instead the stealthiness in
the physical world is highly related to the naturalness of the
adversarial changes. One intuitive example is changing an
attacker’s facial style with cosmetics. In order to show the
effect of our physical attack, we asked a cosmetology student
to apply makeup on the attacker according to the generated
adversarial images. The results are shown in the right part of
the last row. All of them are recognized as the target person
with much higher confidence compared to AdvGlass. To check
if the confidences of our physical examples are high enough
to break the face classifier, we collected a set of images of
the target person online (not in the training dataset) and tested
their confidences. All the downloaded images are correctly
classified as the target person. If we set a confidence threshold
for these images, the threshold should be smaller than 0.5853
so as to ensure 60% accuracy. In this case, all of our physical
examples can pass this threshold.

III. BACKGROUND: STYLEGAN

In this section, we introduce StyleGAN, which is an im-
portant component of our approach. Traditional GANs were
proposed to learn a mapping from a latent space Z (e.g.,
Gaussian distribution) to another space X (e.g., Human face
distribution). However, the generated image’s quality and
resolution still have a lot of room to improve. In order to
generate better images, StyleGAN was proposed by [18].
Unlike traditional GANs with one latent space Z , StyleGAN
utilizes another intermediate latent space W mapped from Z .
This intermediate latent space will be further transformed into
the styles allowing gradual adjustment of styles at different
granularities to forge the final image.

Figure 4 shows the simplified architecture of StyleGAN
which can be partitioned into two parts: a mapping network
F (left) and a synthesis network G (middle). The original

4



    Mapping  network F

z ∈ "

w ∈ #

1

St
yl

e 
bl

oc
k 

4
4 ×

St
yl

e 
bl

oc
k 

8
8 ×

St
yl

e 
bl

oc
k 

10
24

2

Le
ar

ne
d 

co
ns

t

 or w w+

2

Noise n

Sy
nt

he
si

s 
ne

tw
or

k 
G

⋯

3

Fig. 4: StyleGAN architecture.

StyleGAN uses 8 fully connected layers with the Leaky
ReLU activation functions to compose network F and 9 style
blocks (scaled from 42 to 10242) for network G. Each style
block has two convolutional layers and two Adaptive Instance-
Normalization (AdaIN) layers. Each AdaIN layer follows one
convolutional layer and tunes the styles of its feature maps by
adjusting the means and variances [24]. The target means and
variances (i.e., styles) are produced by linearly transforming
w ∈ W . To increase the stochastic variation of the generated
images (e.g., the exact placement of hairs), each style block
also employs random noises to slightly perturb the output of
each convolutional layer. Depending on whether the same w or
different w’s are used at each style block, W can be extended
to W+. W+ space is used to fulfill the mixing regulation in
training StyleGAN and to embed real (unseen) images in the
StyleGAN-based image edition.

We first formalize the original synthesis procedure accord-
ing to Figure 4. Step 1 samples a latent vector z ∈ Z and
maps it to w ∈ W via network F , i.e., w = F (z). Step 2
duplicates w l times to get {wi}li=1 where l is the number of
AdaIN layers. Step 3 transforms the {wi}li=1 to means and
variances, adds random noises {ni}li=1, and generates the final
images G({wi}li=1, {ni}li=1). For simplicity, we by default
omit the subscripts of w and n and add them when necessary.
When the training is finished, F, G and noises n are fixed. We
denote the final image as G(w) and the fixed noises as n∗.

Due to the disentanglement and the expressiveness of W+,
StyleGAN is widely used in image edition tasks. To edit an
image x, the first step is embedding which finds a latent
vector w so that the embedded image G(w) = x. The
embedding procedure can be accomplished by an encoder-
based method or an optimization-based method. The former
learns a network E to minimize Ex∈X [L(G(E(x)), x)] on
a training dataset X , and returns E(x) as the embedding
of a given unseen input x. The latter directly solves the
equation argminw∈W+ L(G(w), x) for a given x to get an
embedding in space W+. Note that we have similar equations
for other latent spaces. In both cases, L is the loss function
that measures the similarity between the given input and the
reconstruction (e.g., LPIPS [25]). We will discuss different
embedding methods in the design section.

IV. DESIGN

Figure 5 shows the overall workflow of our approach. To
facilitate the attack from real outsider attackers (i.e., the first
requirement), step 1 aligns (step 1.1 ) and embeds (step 1.2 )
a batch of the attacker’s images with different poses to the
W+ space. To generate consistent style changes for different
poses (i.e., the fourth requirement), step 2 finds one style
change direction d for the whole batch of latent vectors in
the W+ space, so that the subject system recognizes all the
generated adversarial images as the target person. Specifically,
Step 2.1 adds the initial d to images, and Step 2.2 /2.2′ searches
for a better d. The top part of step 2 shows the white-
box setting. We use gradient-descent optimization to update
the direction d to minimize the Carlini-Wagner (CW) loss
for the subject classifier or the cosine similarity loss for the
subject verifier, which is computed on the output logit vector
of the subject model. The bottom part of step 2 describes
the black-box setting. For a classifier, we can only access
the scalar confidence value. We use a search algorithm (e.g.,
genetic algorithm) to search for the better d. For a verifier, we
white-box attack the surrogate verifier to generate transferable
adversarial examples. The iteration in step 2 terminates when
the attack succeeds or the pre-defined maximum iteration
number is reached. During step 2 , we intentionally bound
the change d to ensure it is sufficiently feasible in practice
(i.e., the second requirement) and can generate natural style
changes (i.e., the third requirement).

A. Aligning and Embedding Real OOD Images

In order to meet the first requirement, one necessary process
is to embed the real attacker’s images captured at different
poses into the W+ space of StyleGAN, so that we can exploit
the style changes. However, due to the fact that most face
StyleGANs are trained on faces aligned (e.g., rotated, shifted,
and affine-transformed) to a certain pose and size [18], [16],
not only the attacker’s image is OOD w.r.t. the training data
of StyleGAN, but the different poses may also be OOD.
This raises challenges for existing embedding methods and
makes them insufficient to embed the real OOD images.
For simplicity, we call the existing StyleGAN an aligned
StyleGAN. Examples of aligned and unaligned training data
are in Section E of the appendix. Based on our new observation
on the random noises used in an unaligned StyleGAN, we
propose our novel embedding approach.

1) Existing methods cannot faithfully embed images with
diverse poses: As mentioned in the background section, ex-
isting embedding methods can be mainly categorized into two
types: encoder-based or optimization-based. Figure 6 shows
the embedding results of different methods, where we embed
4 images for each of two randomly selected people. The first
row shows the real images of different poses. The second row
shows the embedded images using the encoder-based method
e4e [15]. Although the embedded images overall look a bit
similar to the real images, they are actually quite different in
many important aspects. If we zoom in the figure and compare
the result in each column of the first two rows, we can see
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Fig. 5: The workflow of the proposed physical attack. Step 1 embeds images with different viewing angles. Step 2 finds a
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Fig. 6: Different embedding methods. The encoder-based
method cannot embed different poses well and most of
them have almost vertical roll angles. The optimization-based
method can better embed the poses, but not the features (e.g.,
eyes).

Fig. 7: Effects of stochastic noises at the 4x4 style block. The
same noise brings the same pose.

that the face shape and fine features (i.e., eyes, nose, mouth)
are different. The differences are more obvious if the attacker
is more different from the training data as shown by the four
images on the right hand side. Additionally, the embedded
images have almost the same vertical angles that are different
from the real poses. These results mean that the encoder-
based method cannot faithfully embed the fine features and
the diversity very well. The third row shows the results of the
optimization-based method [16]. We can see now the diverse

poses are better embedded, but the fine features (e.g., eyes) are
worse. The embedding is obtained by the optimization w.r.t. to
one given image instead of a learned mapping like the encoder-
based method. Consequently, the optimization essentially tries
to match the embedded image with the real image as much
as possible but can go to some unnatural manifolds. The last
row in Figure 6 gives a glimpse of our faithfully embedded
results before we dive into the details.

2) Random noises of an unaligned GAN determine poses:
Many existing works studied the effects of the {wi}li=1 vectors
at different style blocks: coarse styles ({wi}4i=1 at 42-82 style
blocks) describe the high-level features (e.g., face shape), and
fine styles ({wi}li=8 at 642+ style blocks) mainly focus on
the micro-structures and color schemes. However, none has
studied the effects of the noises at different style blocks of a
StyleGAN trained on the unaligned dataset. This is because
most of the facial StyleGANs are trained on aligned faces and
their noises only bring local stochastic variations as shown by
Figure 20 in Appendix. Note that, the pre-trained StyleGAN
used here has 42-2562 style blocks and outputs images with
resolution 256× 256.

Interestingly, we observed that the noises at the 42 style
block of an unaligned StyleGAN actually bring the pose
variation. Figure 20 in Appendix shows the effects of noises
at different style blocks from 42 to 2562 with the same w.
Each row randomly samples 8 noises at the indicated style
block and generates 8 corresponding images. The rightmost
image shows the average difference across the 8 images. From
the generated images and the differential images, we can see
noises at 82+ style blocks of an unaligned StyleGAN change
local features similar to the noises in an aligned StyleGAN,
while noises at the 42 block vary the poses. Furthermore, we
find that the same noises at the 42 style block can produce
the same poses for different w’s as shown by Figure 7. Every
column uses the same noises (and thus the same pose), and
each row uses the same w (and thus the same person). This
property is not possessed by an aligned StyleGAN and we are
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Fig. 8: Weaker effects of stochastic noises at the 4x4 style
block for real images. The same noises are used as Figure 7.

Real image Pose reference Aligned Embedded

Fig. 9: Different alignment examples. Better alignment leads
to better embedding.

the first to observe this and use it to better embed faces of
different poses. More discussion can be found in Section A of
the appendix.

3) Our alignment and embedding approach: One straight-
forward idea to obtain images with different poses is to embed
one image to the latent space and then sample different 42

noises. However, this cannot work as expected for attackers
because the embedded vector’s distribution is very different
from the latent space’s distribution. Figure 32 in the appendix
shows histograms of the training and embedded W+ vectors.
The results are shown in Figure 8 and we observe some bad
reconstructions (e.g., the second row).

In this work, we propose a new alignment and embedding
approach. Our key insight is that the embedding quality is
substantially confounded by poses and the corresponding per-
turbations. In other words, if we can find a way to disentangle
(not eliminate) this pose factor from the embedding procedure,
we can have better embedded results while preserving the
diversity. Since we have observed that the random 42 noises
can provide various poses, we can leverage them to fulfill the
poses and let the embedding procedure focus on the remaining
features. In particular, we first generate a set of randomly
sampled 42 noises and record the effects (i.e., pose references)
of them. For a given attacker image, we need to decide a
pose reference from the random set to align with such that the
aligned image and the pose reference have similar face sizes,
yaw angles, and roll angles. We then use the corresponding
n42 to replace the noise stored in StyleGAN to embed the
aligned image. Selecting the right pose reference is non-trivial,
and an unsuitable pose reference may lower the quality of
the generated image. Figure 9 shows different pose references
indeed affect the embedding results. The two rows try to align
the same real image according to different pose references to
get the embeddings. Obviously, the first row gives the better
embedding (the reconstructed image is better) and therefore
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Fig. 10: Auto alignment workflow. The top part shows the two
steps of the alignment and the bottom part shows the details of
computing the yaw angle and aligning a real image according
to a pose reference.

we prefer the first pose reference to the second one.
In order to automatically find the good pose reference

and its corresponding random noise, we design an auto-
alignment method. Figure 10 shows its workflow. Step 1.1.1
first generates a set of images with different poses with one ws

and a set of randomly sampled noises N42 = {n42}. We also
compute the yaw angles for the generated images. Step 1.1.1
can be done offline. Step 1.1.2 finds the n42 ∈ N42 whose
image (called the pose reference) has the closet yaw angle
to the real image and align the real image according to this
pose reference. The selected n42 will replace the original n∗42

during the embedding procedure. As explained in the bottom
part of Figure 10, the yaw angle is measured by the ratio
between the width of the left half face (depicted by the yellow
segment) and the right part (depicted by the green segment).
The width is calculated based on the output (depicted by the
pink lines) of existing landmark detection methods. To align
the image, we re-scale the real image to match the face size
and rotate it to match the roll angle (depicted by the blue
arrow). In this example, the real image’s yaw angle is 2.56
and the selected pose reference is the second image (⟨ws,n1⟩)
whose yaw angle is 1.92.

Algorithm 1 shows the pseudocode of our auto alignment. It
takes in a real image x to embed and returns the aligned image
with the selected 42 noise. Line 2 gets the set P of the pre-
sampled images with different 42 noises. Line 3 computes the
yaw angle of x. Line 5-10 go through P to find the one with
the closest yaw angle and store the pose reference image in
tbest and the noise in n42best

. Lines 11-12 compute the center
point, size, and the roll angle of the faces in x and tbest.
Lines 13-14 compute the scale to match the face sizes and the
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Algorithm 1 Auto alignment (step 1.1)
1: function AUTOALIGN(image x)
2: P = GETSAMPLEDPOSES() ▷ Step 1.1.1 (offline)
3: αx = GETYAWANGLE(x)
4: tbest, rbest, n42

best
= ⊥,∞,⊥

5: for t, n42 ∈ P do
6: αt = GETYAWANGLE(t)
7: if |αt − αx| < rbest then
8: tbest, rbest, n42

best
= t, |αt − αx|, n42

9: end if
10: end for
11: centerx, fsizex, rollx = GETFACESIZEANGLE(x)
12: centert, fsizet, rollt = GETFACESIZEANGLE(tbest)
13: scale = fsizet/fsizex
14: roll = rollt − rollx
15: xaligned = ALIGN(x, centerx, centert, scale, roll)
16: return xaligned, n42

best
17: end function
18: function GETYAWANGLE(image x)
19: lmx = LANDMARKS(x)
20: lwidthx = GETLEFTWIDTH(lmx)
21: rwidthx = GETRIGHTWIDTH(lmx)
22: α = lwidthx/rwidthx

23: return α
24: end function

Algorithm 2 Embed real images into W+ space (step 1.2)
1: function EMBED(image x, noise n, epoch e, lr η)
2: w0 = w ▷ Init w as the average value
3: for i ∈ {0, . . . , e− 1} do
4: imgi = SYNTHESIZE(wi, n) ▷ i.e., G(w, n)
5: ℓi = LPIPS(imgi, x)
6: wi+1 = wi − η∇wℓi
7: end for
8: return we, n
9: end function

rotation angle to match the roll angles. Line 15 aligns x and
line 16 returns the aligned image xaligned and the selected
noise n42best

. The code snippet of ALIGN can be found in the
appendix.

Then we use the optimization-based embedding method
to obtain the aligned image xaligned’s latent vector
w = argminw∈W+ L(G(w, {n42best

, n∗82 , . . .}), xaligned).
Algorithm 2 describes how we embed one image into the
latent space. It supports embedding a batch of images naturally
because of the vectorization. Line 2 initializes w using the
average latent vector. Lines 3-6 iteratively update w according
to the LPIPS loss between the generated image and the real
image. At the end of step 1 , we will have a set of pairs of
latent vectors and noises: {⟨w0,n0⟩, . . . , ⟨wk,nk⟩}.

B. Constraining Natural and Consistent Changes

This subsection elaborates how we achieve the practical
applicability (i.e., the second requirement) and stealthiness
(i.e., the third requirement) by bounding the natural style
changes in the latent space, and the consistent style changes
(i.e., the fourth requirement) by finding one style change for
images of different poses.

1) L2 regularization cannot provide natural style changes:
The second and third requirements can be accomplished by

No  
constraints
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Fig. 11: Effects of different bounding strategies.
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Fig. 12: Multi-variant Gaussian (MVG) distributions.

confining the optimization within the vicinity of the starting
point in the latent space. It is similar to how existing pixel-
based adversarial examples (e.g., PGD [9], CW [10]) achieve
“invisibility” by bounding or reducing the perturbations w.r.t.
some Lp norm distance from the start image. Here, a natural
choice is to constrain the L2 distance between the final vector
w and the initial vector w0 to the original loss function (i.e.,
L(w, t,w0) = Lclass(G(w), t)+L2(w,w0)) as L2 distance is
widely used by many StyleGAN-based approaches [18], [16],
[14].

The results of using L2 norm is shown in Figure 11. The
first row uses no constraints at all (i.e., the loss is L(w, t) =
Lclass(G(w), t)). We can see that though the confidence is
very high, the images are not natural human faces. With L2

loss, images in the second row have 100% attack success rate
but have unnatural style changes (e.g., green face in the third
column).

This is because L2 distance ignores the different magnitudes
of different dimensions. Consider the following toy example.
Assume w = [x, y] contains two elements x ∼ N (0, 1002)
and y ∼ N (0, 1) and its distribution is visualized in Fig-
ure 12a. Take a look at w0 = [0, 0] (white cross), w1 = [0, 1]
(red cross), and w2 = [100, 0] (orange cross). A simple
calculation can tell us L2(w0,w1) = 10 ∗ L2(w0,w2). But
Figure 12a shows they are “visually (or proportionally) the
same” close to w0. Indeed, this is not counter-intuitive because
100 in the first dimension (with std 100) produces a similar
deviation as 1 in the second dimension (with std 1). L2

distance makes more sense in the space where each dimension
has a similar magnitude such as the image pixel space (each
pixel ∈ [0, 1]). However, different dimensions in the W+ space
have different magnitudes [26], [22], therefore we need a better
constraint that considers this factor.
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Fig. 13: Effects of different strategies to find the changes.

2) Bounded natural style changes provide practical appli-
cability and stealthiness: In fact, researchers have found that
revert the last activation function ϕ = LeakyReLU(0.2)5 of
the mapping network F can produce a multi-variate Gaussian
space [22], [26]. Figure 12b visualizes the two bi-variate
distributions of randomly selected two pairs of dimensions. As
reflected in the previous toy example, the extent of variation
should be measured w.r.t the variance.

Specifically, the i-th dimension of ϕ−1(W+) can be mod-
eled as N (µ[i],σ[i]2). In order to constrain a similar degree of
variation in each dimension, we statistically bound the change
in each dimension by c[i] · σ[i]. The last row in Figure 11
shows the corresponding result. Compared with the third row,
the style changes are more natural and the essential features
are better preserved.

In practice, we pre-sample 100k w’s and compute the std
σ[i] for i-th dimension of ϕ−1(W+). We define a function
called STATBOUND(d,σ, c) to clip each dimension of the
change direction d. Formally, it changes i-th dimension of
d as follows:

d[i] = ϕ(max(min(ϕ−1(d[i]), c[i] ·σ[i]),−c[i] ·σ[i])) . (1)

3) One modification direction for images with different
poses provide the consistent change: Finally, we produce the
same style changes for images with different poses. If we
individually optimize the latent vectors in the batch as in
the previous section, we usually get different style changes
for different vectors, as shown by the first row of Figure 13
(especially the second image and the last image). Many
researchers believe that there are different semantic directions
in the latent space and the same direction should result in the
same style changes [27], [28]. Hence, we choose to optimize
one style changing direction d for all the latent vectors in
the batch. In particular, we want to find a direction vector d
such that ∀w in this batch, G(wi + d) can be misclassified
as the target person. The second row of Figure 13 shows now
different poses have similar style changes. For simplicity, we
use W to denote a batch of latent vectors w’s and W + d
means adding the same d to each one in the batch (see the
broadcasting semantics [29]).

C. White-box Attack

Gradients are available in this white-box setting, so we use
the gradient-descent method to find the direction. Algorithm 3
formally describes our white-box attack procedure. It takes as
input a batch of the attacker’s images X with different poses,

5ϕ−1 = LeakyReLU(5) and LeakyReLU(p) = λx.max(0, x) + p ·
min(0, x)

Algorithm 3 White-box attack (step 2.2)
1: function ATTACK(images X , model M , target t, epoch e, lr η,

std σ, coef c)
2: X,N = AUTOALIGN(X)
3: W = EMBED(X,N )
4: d1, dbest, ℓbest = 0,0,∞
5: for i ∈ {1, . . . , e} do
6: imgi = SYNTHESIZE(W + di, N )
7: ℓi = LOSS(M(imgi), t)
8: if ℓi < ℓbest then
9: dbest, ℓbest = di, ℓi

10: end if
11: di+1 = di − η∇dℓi
12: di+1 = STATBOUND(di+1,σ, c) ▷ Equation (1)
13: end for
14: return SYNTHESIZE(W + dbest, N )
15: end function

the subject model M , the target label t of the subject classifier
(or the feature of the target image returned by the subject
verifier), the maximal epoch e, the learning rate η, the pre-
computed stds σ, and the bound coefficient c. Line 2 aligns the
batch of images and records the corresponding 42 noises (step
1.1 in Figure 5). Line 3 embeds the images into the latent space
(step 1.2 ). Line 4 initializes the direction and variables used to
store the best direction and loss. Lines 5-13 conduct the attack
loop for e times (step 2.1 - 2.3 ). Line 6 synthesizes the images
with the style changes (step 2.1 ). Line 7 feeds the generated
images into the subject model and computes the corresponding
loss (step 2.2 ). Lines 8-10 update the best direction and loss
if needed. Line 11 updates the direction based on the learning
rate and the gradients. Line 12 calls STATBOUND to constrain
the style changes as explained in the previous subsection (step
2.3 ). Line 14 generates and returns the images using the best
direction.

D. Black-box Attack

To black-box attack the subject verifier, we apply Algo-
rithm 3 on the surrogate verifier to generate transferable ad-
versarial examples. To black-box attack the subject classifier,
since we have no access to the gradients, we use the search
algorithm to increase the confidence of the target label. Here,
we use the genetic algorithm as an example as illustrated by
Algorithm 4. The black-box attack function’s parameters are
similar to the white-box one, except that it does not need
the learning rate but needs the size n of each generation
and the confidence threshold f for an early stop. Lines 2-3
are the same with the white-box attack (step 1.1 - 1.2 ). Line
4 initializes the first generation. Different from initializing
the direction as 0 in the white-box setting, here we use
random values (sampled from a uniform/normal distribution)
as the direction. The intuition behind is to diversify the first
generation so that we have better chances to produce better
offsprings. Lines 5-20 form the main attack loop (step 2.1 -
2.3 ) and are executed for at most e generations. Line 6
computes the score for each direction in the current generation
(step 2.2′ ). A score is a float number denoting the average
confidence of the target label over the batch of latent vectors:
Ew∈batch[M(G(w + d, N))[t]]. Line 7 finds the direction
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Algorithm 4 Black-box attack on classifiers (step 2.2’)
1: function ATTACK(images X , model M , target t, size n, epoch

e, conf f , std σ, coef c)
2: X,N = AUTOALIGN(X)
3: W = EMBED(X,N )
4: gen1 = GETFIRSTGEN(n)
5: for i ∈ {1, . . . , e} do
6: scoresi = GETCONFIDENCE(M,W,N, t, geni)
7: besti = FINDBEST(geni, scoresi)
8: if scoresi[besti] ⩾ f then
9: return SYNTHESIZE(W + besti, N )

10: end if
11: geni+1 = {besti}
12: for j ∈ {1, . . . , n− 1} do
13: parent1 = WEIGHTEDSAMPLE(geni, scoresi)
14: parent2 = WEIGHTEDSAMPLE(geni, scoresi)
15: childj = CROSSOVER(parent1, parent2)
16: childj = MUTATE(childj)
17: childj = STATBOUND(childj ,σ, c)
18: geni+1 = geni+1 ∪ {childi}
19: end for
20: end for
21: dbest =FINDBEST(gene, scorese)
22: return SYNTHESIZE(W + dbest, N )
23: end function

with the highest average confidence in the current generation.
Lines 8-10 utilize the early stop strategy: if the best direction
has a score larger than the desired confidence, we use this
direction to generate the final images. Lines 11-19 build the
next generation. Line 11 preserves the current best direction
into the next generation based on the elitism strategy. Lines
12-19 produce the remaining n − 1 offsprings. Parents with
healthier genes are more likely to have healthier children.
Lines 13-14 use the weighted random sampling method to
select parents. The weight is the score. This gives higher
chances to samples in current generations with higher scores,
but also allows for the other samples. Line 15 also uses the
weighted random sampling method to let the child inherit each
gene (i.e., the dimension) from one of the parents. To include
more diversity and enhance the search capability, Line 16
randomly mutates some genes of the child. Line 17 constrains
the changes using STATBOUND (step 2.3 ). Line 18 adds the
child to the next generation. Lines 21-22 find the best direction
and use it to generate the batch of images.6

V. EVALUATION

We implement our approach in PyTorch [30] and open-
source it7. We evaluate it on various datasets and models in
both the white-box and black-box settings. Besides showing
the results in the digital space, we also show that we can
succeed in physically attacking the online commercial face
recognition service. Furthermore, we test our approach against
existing defense methods and show our attack can still break
them. Our evaluation server has Intel Xeon Silver 4214

6In our evaluation, we set the maximum iteration number as 100. As a
result, the proposed attack requires fewer than 100K queries for 1000 samples.
These numbers are consistent with the literature [21], [22].

7Our code: https://github.com/njuaplusplus/imu

2.20GHz 12-core CPUs with 256 GB RAM and NVIDIA
Quadro RTX 6000 GPUs.

A. Experimental Setup

1) Datasets and Models: We select three most widely
used large-scale face classification datasets: VGGFace, VG-
GFace2, and CASIA. VGGFace has about 2.6M images
of 2.6K identities, VGGFace2 contains about 3.3M images
of 9.1K identities, and CASIA has about 0.5M images of
10.6K identities. For each dataset, we download two pre-
trained models with different architectures from their offi-
cial websites or GitHub repositories. More specifically, the
models we used are VGG16 and VGG16BN on the VG-
GFace dataset, ResNet-50 and InceptionV1 on the VGGFace2
dataset, and SphereFace and InceptionV1 on the CASIA
dataset. For verification models, we download four pre-trained
models: IRSE50/IR152/Facenet/MobileFace. We also evaluate
our black-box approach on two commercial face recognition
services Clarifai [5] and Face++ [31]. We randomly select
8 identities from the VGGFace2 dataset and upload their
images to Clarifai to train a classifier to attack. Face++
provides verification APIs to predict the similarity of two
images. The unaligned StyleGAN we use is trained by the
GenForce group [32] on the 104K unaligned images from
CelebA dataset.

2) Attackers and Target Identities: We use 12 identities
from the Pose dataset [33] as the attackers. Pose dataset
contains 12 identities and 20 images with different poses for
each identity. For the target label of the subject classifier, we
select each of the top-20 predicted identities for the given
attacker.8 To attack verifiers, we randomly select 10 face
images. Effects of the label ranks and skin colors are studied
in Section B and Section I in the appendix.

3) Baselines: For classifiers, we compare with Se-
mAdv [19] and AdvGlass [11] introduced earlier. We also
propose one additional baseline Inp. Since the interpolation
between latent vectors is able to produce an image similar
to the two end points, we can first use model inversion [22]
to get a representative image (and the corresponding latent
vector wt) of the target label t and then find a point on
the segment defined by the attacker’s latent vector wa and
wt to generate the adversarial image. Formally, Inp finds a
coefficient b = argminb L(M(G(b ∗wa + (1 − b) ∗wt)), t).
For verifiers, we compare with AdvMakeup [20].

B. Research Questions

Our evaluation consists of experiments in both the cyber
space and the real world. Specifically, we study the following
major research questions:

1) Can our white-box attack succeed in the cyber space?
2) Can our black-box attack succeed in the cyber space?
3) Are the changes natural and consistent styles?
4) Can our physical attack succeed in the real world?

8If the target person is ranked very low for the attacker, it may be infeasible
to have stealthy and natural style changes for physical attacks.
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In order to answer RQ1 and RQ2, we utilize the following
two metrics as traditional attack studies.
Attack Effectiveness. This is also called Attack Success Rate
(ASR). It measures the percentage of the generated images
that can be misclassified by the subject model as the target
labels.
Attack Generalizability (Transferable ASR). Better adver-
sarial examples usually have higher generalizability. On each
dataset, two pre-trained models with different architectures are
used. We generate the adversarial examples on one model and
report the ASR on the other model.

For both metrics on classifiers, we report top-1 ASR as
well as top-5 ASR. If the target label is included in the top-
5 predicted labels with the highest confidence, we count it
as a successful top-5 attack. We also rescale the generated
adversarial images and add random noises to simulate the
noisy environment in the real world. For verifiers, we only
report the ASR.

To answer RQ3, we use Natural Image Quality Evaluator
(NIQE), Total variance (TV) and anonymous human studies.
Image Quality. We use NIQE+TV to measure image quality.
NIQE evaluates the non-reference image quality score for a
given image. It computes the deviation of the image features
from the statistical features derived from the natural images.
A smaller NIQE score implies better perceptual quality. TV
measures how neighboring pixels change. An image with a
smaller TV is less noisy.
Anonymous Human Study. We conduct two types of human
studies. The first study’s goal is to prove that we add changes
to the attacker’s face instead of generating the target person’s
face. We show one generated adversarial face to the user and
ask the user to select if this face has the same identity as
the attacker or the target. The second study’s goal is to verify
whether our approach can generate consistent style changes
for different poses. We show two adversarial frontal faces
of one attacker with different styles and another side face
with either style. We ask the user to match the correct style.
Figure 26 and Figure 27 show the question examples. In total,
100 users participated in this study and each of them was
asked 6 questions.

RQ4 directly measures whether our ultimate goal can be
achieved. We collect a set of photos with different poses from
the attackers and use our black-box attack method to attack the
commercial service. We then ask attackers to apply the style
changes and re-take a set of photos. We upload those photos
to the commercial service to see if they are misrecognized as
the target.

C. (RQ1) White-box Attack Results

The results of white-box attack methods on classifiers are
shown in Figure 14. Figure 14a shows the top-1/top-5 ASR
of four methods on the subject models. The bars marked
with slashes denote the vanilla ASR. Our method achieves
high ASR for all cases. Use the leftmost section (VGG16
VGGFace) as an example. The first four bars marked with
slashes mean the top-1 ASR of Inp/AdvGlass/SemAdv/Ours

is 35%/99.38%/99.71%/100% when they generate adversarial
images on VGG16 and test them on VGG16. Additionally,
since the real-world environment is usually noisy (e.g., dif-
ferent viewing distances and the dust on the lens), We hence
simulate these negative factors by cropping and rescaling the
images and adding random noises. The results (+simu) are
reflected by the solid bars in the figure. Observe that our
method is less affected by these noises, and outperforms the
competitors. Still use (VGG16 VGGFace) as an example. The
decrease of SemAdv’s ASR is about 20% while ours is only
about 2%.

Figure 14b shows the top-1/top-5 ASR on the reference
models and can be interpreted similarly. Taking the leftmost
section as an example, where the attack is conducted on
VGG16 but the images are tested on VGG16BN. Our approach
has the highest transferable ASR with the simulated noises on
all the models and SemAdv’s ASR decreased by more than
half on 50% of the models. We also observe that SemAdv has
high ASR and transferable ASR for the vanilla case (i.e., bars
marked with slashes) but degraded significantly in the noisy
cases. The reason is that the adversarial noises of SemAdv are
actually unbounded and pervasive (i.e., covering the whole
image). When the perturbation is unbounded and pervasive,
the adversarial examples can have reasonably high transferable
ASR. However, simulating the real-world environment impairs
the adversarial noise much more than the adversarial styles.
Figure 15a shows the results on verifiers. Similar results are
observed, i.e., our approach has much higher ASR and trans-
ferable ASR than the baseline. Hence, we have the positive
answer for RQ1.

D. (RQ2) Black-box Attack Results

Figure 16 shows the results of our black-box attack and
AdvGlass on classifiers. From Figure 16a, we can see our
attack significantly outperforms AdvGlass and is quite effec-
tive (90+% ASR) on all the subject models except one. With
the simulation, our performance is still reasonably high. The
generalizability of our attack is low yet still much higher than
that of AdvGlass. Figure 15b shows the results on verifiers.
Note that the black-box attack against one verifier is based
on white-box attacking the other three verifiers, so we only
report ASR here. Our approach also outperforms the baseline
on verifiers. Thus, as for RQ2, the answer is yes.

E. (RQ3) Naturalness and Consistency

Figure 17 shows the average NIQE+TV scores for the adver-
sarial images generated by different attack methods. The larger
score means the worse quality. AdvGlass uses local noises, so
its images have a large score. SemAdv uses pervasive noises
(yet less intensive than AdvGlass) and thus its score is smaller
than AdvGlass but larger than ours. AdvMakeup patches the
orbital area with artifacts and hence also has a large score.
Our method has the best quality because of the natural style
changes. For the human study results, all users consider our
style-changed images are from the attackers and about 95%

11



VGG16
VGGFACE

VGG16BN
VGGFACE

ResNet50
VGGFACE2

InceptionV1
VGGFACE2

InceptionV1
CASIA

SphereFace
CASIA

Model & Dataset

0

25

50

75

100
A

SR
 (%

)

Inp
AdvGlass

SemAdv
Ours

Inp+simu
AdvGlass+simu

SemAdv+simu
Ours+simu

(a) Top-1/top-5 (dark/light color) ASR on subject models.

VGG16
VGGFACE

VGG16BN
VGGFACE

ResNet50
VGGFACE2

InceptionV1
VGGFACE2

InceptionV1
CASIA

SphereFace
CASIA

Model & Dataset

0

25

50

75

100

A
SR

 (%
)

Inp
AdvGlass

SemAdv
Ours

Inp+simu
AdvGlass+simu

SemAdv+simu
Ours+simu

(b) Top-1/top-5 (dark/light color) ASR on reference models.
Fig. 14: White-box attack effectiveness and generalizability on classifiers. The higher the better.
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Fig. 15: Attack effectiveness and generalizability on verifiers. The higher the better.
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Fig. 16: Black-box attack effectiveness and generalizability on classifiers. The higher the better.
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Fig. 17: Image quality score. The lower the better.

users can recognize the corresponding styles of different poses.
Therefore, the answer to RQ3 is positive.

F. (RQ4) Commercial Service Attack Results
Figure 18 shows the attack result on the commercial service

Clarifai. We randomly upload 8 identities with about 2k
images to Clarifai and train a classifier. We used our black-box
approach to attack a non-top-1 label whose images are shown
in the rightmost column. Taking Figure 18 as an example,
the confidence scores of the target label on the attacker’s
original images are indicated by the numbers in the first
row and are very low. The digital results generated by our
approach are shown in the second row. The main changes are
the pink/purple face color, the shorter and arched eyebrows
(thinner right eyebrow), the pink lipstick and different contours

and highlights. The photos retaken after applying the style
changes are shown in the last row of Figure 18. We can see
that the confidence is indeed very high. The style changes
are faithfully realized. Note that the slight color difference
between the digital images and the physically re-captured
images is unavoidable because of the cosmetic and camera.
This experiment gives the positive answer to RQ4. That is,
our approach can physically attack the commercial API in the
real world. Please see Figure 31 in the appendix for another
example of attacking Clarifai. The comparison of our approach
and the baseline on Face++ is in Figure 23 in the appendix.

G. Effects of Defenses

Adversarial training is the most widely-used defensive
method against adversarial examples. We evaluate our at-
tack against three existing adversarial training methods (Fas-
tAdv [34], GAT [35], and AdvMix [36]) and the adaptive
defense. FastAdv is an efficient and effective implementation
of the traditional adversarial training based on the modified
Fast Gradient Sign Method (FGSM) adversary in the input
image (pixel) space. GAT and AdvMix are StyleGAN-based
strategies. GAT’s adversarial training examples are generated
by finding the misleading styles and noises in StyleGAN.
AdvMix generates adversarial training examples by randomly
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Fig. 19: Attack performance on VGG16/ResNet34 networks
adversarially trained with different strategies.

replacing the styles in high-resolution style blocks and finding
the most misleading (largest CE loss) examples. The above
three adversarial training strategies have no knowledge of
our attack, so we use another more knowledgeable defensive
strategy that knows our attack algorithm and thus is known as
the adaptive defense. Specifically, the defender uses the exact
same algorithm to generate adversarial training examples. We
train models without defense or with one of the four above-
mentioned defense strategies using 8 people randomly selected
from the VGGFace2 dataset.

Figure 19 shows our attack performance on VGG16 and
ResNet34 trained with different strategies. FastAdv is not
effective as expected because it only robustifies the mod-
els against adversarial noises which are completely different
from the style changes. Though GAT and AdvMix slightly
decreased the attack effectiveness, our attack still has a rea-
sonably high ASR (e.g., 88/86% on VGG16 with GAT/Ad-
vMix and 74/90% on ResNet34). It is not surprising that the
adaptive defense cannot prevent our attack, because attackers
are outsider people and they cannot be completely covered. In
summary, our attack can bypass existing adversarial training
methods as well as the adaptive defense.

VI. RELATED WORK

Adversarial Attacks. Many attack approaches in the cyber
space have been proposed to fool the neural networks [9], [19],
[37], [10], [21]. Besides the cyber space, many researchers
extend the attack into the physical world [11], [20], [38], [39],
[12]. Most of them are based on optimized adversarial noises
and thus neither natural nor stealthy for human faces. The

most relevant one in our settings, is AdvGlass [11] which
optimizes unbounded adversarial noises within the eyeglass
frame area. However, it’s less stealthy and effective compared
to our approach.
Adversarial Defenses. To mitigate the threat brought by the
adversarial attacks, many defenses have been developed. The
most widely used method is called adversarial training [9].
The basic idea is to use certain attack methods to generate
adversarial examples and add them into the training data to
robustify the models. FastAdv [34] uses traditional digital
pixel attack to generate adversarial examples, and thus is
ineffective against our style-based attack. GAT [35] optimizes
the styles and noises in StyleGAN to generate adversarial
examples. AdvMix [36] first embeds benign training data
into W+ and generates adversarial examples by randomly
perturbing styles at certain style blocks. GAT and AdvMix
can robustify simple models, but fails in larger ones.
GANs and StyleGANs. GAN was proposed to learn a map-
ping from one distribution (e.g., Gaussian distribution) to
another distribution (e.g., text and images) [40]. A lot of GANs
with different architectures and training strategies have been
devised to generate better images with higher resolutions [18],
[16], [41], [42]. Recently, some 3D-aware StyleGANs have
been proposed [43]. However, it’s much more difficult to
embed real images compared to 2D StyleGANs [44]. They are
not suitable for the physical attack, because attackers needs to
embed their real images.

VII. CONCLUSION

In this paper, we propose a novel physical impersonating
attack based on StyleGAN. Given the same person’s multiple
images with different poses, we align and embed all the
images into a latent space, in which we search for the same
statistically bounded style change that is physically applicable,
stealthy, and consistently effective across all the images. We
conduct both digital and physical experiments showing that
the proposed attack achieves high attack success rate and can
be physically executed by applying makeup on the attacker.

VIII. ETHICAL CONSIDERATIONS

We notified Clarifai and Face++ about this attack and got
their approval for the tests. We use Amazon Mechanical Turk
to outsource the user studies and have the needed exemption
from our IRB office.
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APPENDIX

A. EFFECTS OF RANDOM NOISES

Figure 20 (left) shows the effects of random noises in a
StyleGAN trained on the aligned FFHQ 2562 dataset. All the
images use the same latent vector. Each row shows the effects
of the random noise at a different style block denoted by the
left label (i.e., 42 − 2562). In each row, we randomly sample
8 different noises and inject them to generate 8 images (3 of
which are shown to save space). The right most column shows
the magnified absolute difference. We can see that the random
noises only bring small variations.

42

2562

1282

642

322

162

82

Aligned StyleGAN Unaligned StyleGAN

Fig. 20: Effects of stochastic noises at the different style blocks
of aligned (left) and unaligned (right) StyleGAN. We only
show 3 images here to save space. The rightmost column in
each part shows the magnified absolute difference (computed
on 8 images).

Figure 20 (right) shows the effects of random noises in
a StyleGAN trained on the unaligned CelebA 2562 dataset.
All the images use the same latent vector. Each row shows
the effects of the random noise at a different style block
denoted by the left label (i.e., 42 − 2562). In each row, we
randomly sample 8 different noises and inject them to generate
8 images. The right-most column shows the magnified absolute
difference. We can see that the random noise at the 42 style
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Page 2

Fig. 21: Feature maps in each style block of an unaligned
StyleGAN. Only the noises at 42 block are randomized.
The yellow boxes denote the corresponding areas at different
blocks. 1st-6th blocks are enlarged for better visualization.

block actually produces pose variation while noises at other
style blocks only bring small variations.

The special structure and training method of StyleGANs
allow the different blocks to denote features of various gran-
ularities. Specifically, StyleGAN training first downsamples
images to 4x4 and trains only the 4x4 block till it stabilizes.
Then, it downsamples images to 8x8 and trains the 8x8 block.
Note that at the 4x4 level, the downsampled images likely just
denote coarse features like poses. We are the first to observe
that for StyleGAN trained on an unaligned dataset, noises at
the earlier blocks can affect poses. Here we only randomize the
noises at the 42 style block. We visualize the output (feature
maps) of each style block in Figure 21. The width and height
of the 42 style block’s output are 4. It is upsampled to 82

and fed to the 2nd block. This upsampling continues until
we generate the final 2562 output image. The 42 feature map
can be considered as setting the coarsest structure of the final
image. The highlighted yellow squares in different feature
maps partially illustrate how the 42 noises affect later layers.
For example, the square in the 42 block is upsampled across
multiple layers to produce the square in the 2562 block.

B. EFFECTS OF LABEL RANKS ON CLASSIFIERS

In our main experiments on classifiers, we attack top-20
labels. Here we attack different top-k lables to show that our
approach can still perform well on other labels. To better
display the results, we first define relative top-k labels by
dividing the original rank by the number of all labels. For
example, VGGFace has 2.6K labels and the top-26 labels
are the relative top-0.01 labels. This definition of relative
top-k labels helps display the average results on all models
and datasets in one chart with the same x-axis as shown
by Figure 22, because different datasets have different numbers
of labels, (e.g., 2.6K for VGGFace and 10.6K for CASIA) and
cannot be well described by one x-axis. As expected, with the
increasing of k, the ASR decreases because we have more
different target people. From the intersection point of the two
red dashed lines, we can see the average ASR are greater than
90% for the top-0.2 labels (i.e., > 2.1K labels on CASIA, 0.5K
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on VGGFace, and 1.8K on VGGFace2). If we attack all the
labels (i.e., similar to randomly selected targets), the average
ASR is about 44.09%. AdvGlass’s ASR is about 50.68%. It’s
slightly higher because AdvGlass uses adversarial noises while
ours are natural style changes (with more constraints).
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Fig. 22: Attack effectiveness on different top-k labels (aggre-
gated on 6 models). The intersection point of the two red
dashed lines show the ASR is about 90% for top-0.2 labels.
On CASIA dataset, it means more than 2.1K labels.

C. RESULTS ON FACE++

Face++ provides a face verification service. Given a pair
of images, it outputs a similarity score. Figure 23 shows
the comparison results of ours and AdvMakeup. The x-axis
means the threshold t. If the similarity score of two images
is larger than t, then they are considered as one person. The
y-axis means the attack success rate. We can see our method
outperforms Adv-Makeup.
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Fig. 23: Face++ verification results.

D. EFFECTS OF AUTO-ALIGNMENT AND STATBOUND

Our default setting uses auto-alignment and a statistical
bound. Its ASR is 93.75% and its TV+NIQE score is 49.17.
If we remove the auto-alignment, the ASR is 93.75% but
the TV+NIQE score increases by 9.93. A lower TV+NIQE
score means better image quality. Therefore, auto-alignment
can help generate images with better quality. If we replace
the statistical bound with L2 bound, the ASR is 100% but the
TV+NIQE score increases by 7.01. Therefore, the statistical
bound also helps generate better style changes while maintain-
ing a high ASR.

E. ALIGNED AND UNALIGNED TRAINING DATA

Figure 24 shows the average images (left) and images
randomly selected from the aligned and unaligned training
datasets. We can observe: 1) The average image of the aligned
dataset has clearer face features (eyes, nose, and mouth). This
is because the faces are aligned to certain positions. 2) The
images randomly selected from the aligned dataset indeed have
more uniform poses than those from the unaligned dataset.
Details of building the aligned CelebA-HQ dataset are in
Appendix C of the PGGAN paper[41].
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Fig. 24: Aligned/unaligned (top/bottom) training data.

F. COMPARISON WITH ADVGAN

AdvGAN’s attack goal is to generate small adver-
sarial noise-like perturbations for classifiers [45], [46].
Their white-box ASR(%) on VGG16 / VGG16BN /
ResNet50 / InceptionV1(VGGFace2) / InceptionV1(CASIA) is
71.59/97.73/63.64/81.82/96.59 which is inferior to ours (close
to 100% for all tested models).

G. DEMOGRAPHICS OF POSE DATASET AND HUMAN
STUDIES

For the Pose dataset, the ages range from 20 to 40 and the
races include Asian and Caucasian. There are 2 females and
10 males. For our human studies, the results are anonymously
collected from Amazon Mechanical Turk. We do not find
demographic information on Amazon website.

H. PHYSICALLY REALIZING THE MAKEUP

Students in Cosmetology helped apply the makeup. We
show them the original images, the generated images, and
the differential images. They applied the makeup accordingly.
Photos are then taken and new differential images are further
generated to compare with the original differential images.
Adjustments may be needed until the two sets of differential
images align.

I. EFFECTS OF DIFFERENT SKIN COLORS

To see the effect of skin colors on the ASR, we evaluate
our attack on ResNet50 (classifier) pre-trained on VGGFace2
dataset in four attacker&target settings: 1) dark&random-dark
98.44%, 2) dark&random-light 53.98%, 3) light&random-dark
59.38%, and 4) light&random-light 62.5%. To get 8 random
target people of a certain skin color (e.g., random-dark), we
iteratively run random.sample and manually check the
sampled people until we get 8 people of that certain skin color.
Attacking IRSE50 (verifier) pre-trained on the LFW dataset

16



gives a higher ASR close to 100%. Figure 25 shows some
examples.

The phenomenon that the networks/algorithms perform
differently on well-represented and under-represented sub-
distributions (e.g., light-skinned vs dark-skinned people) is not
uncommon as pointed out by many researchers [47], [48], [49].
It’s reported that only 5% of identities in VGGFace2 dataset
have dark skin [49]. Therefore target people with dark skin
are in the top-ranked labels of attackers with dark skin. Thus
the dark&dark ASR of (98.44%) is very high (similar to the
top-0.1 setting in Figure 22). For attackers with light skin,
randomly selected targets with light skin have almost randomly
ranked labels, and hence the ASR of light&light (62.5%) is
only slightly higher than the light&dark (59.38%).

Fig. 25: Adversarial examples against different target people
on ResNet50. Each row corresponds to one target person
whose real images are shown on the right.

J. USER STUDY EXAMPLES

Figure 26 shows an example of the first user study. It’s goal
is to check if we indeed add changes to the attacker’s face or
just generate the target face. In each question, we show the
user the generated adversarial face in the first row and ask the
user to select the same person from the attacker’s face and
the target person’s face in the second row. 100% users can
correctly select the attacker’s face. This means our approach
indeed generates the style change.

Figure 27 shows an example of the second user study. It’s
goal is to check if our approach can generate consistent style
changes for multiple images of the same attacker with different
poses. We show the user one reference image of the attacker
at a certain pose with a certain makeup in the first row and
the other two faces of the same person with the same pose
but different from the reference one in the second row. Only
one of the two faces in the second row has the same makeup
with the reference image. We ask the user to select the face in

which one do you think is the above person?

Folder: cmp_atk_target

Fig. 26: Human study example

cluster them to see if our styles are consistent

Folder: cmp_atk_makeup_consistency

Assign the labels to the same styles according to the given image.

which one wears the same makeup as the above person?

Fig. 27: Human study example

the second row that wears the same makeup as the reference
image. About 95% users can pick the correct answer. This
means our approach can generate consistent style changes.

Our human studies were anonymously collected from Ama-
zon Mechanical Turk (MTurk). Each user was asked 6 ques-
tions which took < 1 minute. We paid each user $0.12.

K. MORE ATTACK RESULTS

Figure 28 shows the adversarial examples generated by
different methods for the same attacker and model as Figure 2
with different target. In Figure 2, the attacker wants to imper-
sonate an actor and here the target person is an actress. Three
real images of the target person are shown in the rightmost
column. The first row shows the images of the attacker at
different poses. Each number on each image shows the target
confidence. The second and third rows show the initial and
final images of SemAdv. The fourth row presents the results
generated by AdvGlass. The fifth row shows our results. We
can see that our images are more natural and less ostentatious.
The last row shows the effect of the physical attack. Compared
to AdvGlass, our physical adversarial images have higher ASR
and target confidence.

Figure 29 shows the difference between the final images
generated by different approaches and the initial images for
Figure 2 and Figure 28. From the difference images, we
can see SemAdv generates patterns like pervasive adversarial
noises while AdvGlass generates local adversarial noise. Our
approach generates smooth style changes.
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Fig. 28: Attacking label 2592 of VGG16.
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Fig. 29: Absolute difference between the final images and the
initial images of label 2396 (top) and label 2592 (bottom).
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Fig. 31: Clarifai physical attack results.
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